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Abstract

Turbulent flows and related heat transfer over a fully developed wavy channel is investigated by a turbulence model.

The nonlinear k–e–fl model of Park et al. [Int. J. Heat Fluid Flow 24 (2003) 29] is slightly modified and their explicit

heat flux model is employed. The Reynolds number is fixed at Reb ¼ 6760 through all wave amplitudes and the wave

amplitude is varied in the range 06 a=k6 0:15. The predicted results for wavy channel are validated by with comparing

the DNS data of Maaß and Schumann [Flow Simulation with High Performance Computers, Notes on Numerical

Fluid Mechanics 52 (1996) 227]. The model performance is shown to be generally satisfactory. By using k–e–fl model,

the enhancement of heat transfer and the characteristics of turbulent flow in wavy wall are investigated. Finally, the

effects of wavy amplitude on separated shear layer and its consequent influence on heat transfer are scrutinized.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Turbulent flows over a wavy wall display peculiar

characteristics that are not found in flows over a flat

wall. For example, the surface undulation induces the

alternating occurrence of favorable and adverse pressure

gradients and the periodic changes of streamline curva-

ture. In the case of a deep undulation, recirculating flow

region appears near the trough of the wavy wall. These

phenomena occurring in wavy wall channels are of great

interest in many engineering applications especially, in

the enhancement of heat transfer.

In order to understand the effects of waviness of walls

on turbulence, many experimental and numerical studies

have been carried out. Buckles et al. [1] experimentally

identified the three flow regions such as the separated

region, an attached boundary layer and free shear layer
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formed by the separation of the boundary layer. Hudson

et al. [3] performed the measurements of the spatial and

time variation of velocity components and turbulence

quantities. Their work showed that turbulence produc-

tion in the flow near the wavy surface is different from

that in the flow on a flat surface. It is mainly associated

with the interactions between the free shear layer and the

separated flow region. Maaß and Schumann [4] did a

direct numerical simulation (DNS) of turbulent flows

over a wavy boundary and compared their results with

the measurements by Hudson et al. [3]. They showed the

effective friction velocity is about 50% larger at the wavy

lower surface than at the flat upper surface mainly be-

cause of the additional pressure drag. Cherukat et al. [5]

also found by DNS that the velocity bursts originated

from the separated flow region remains active over large

distance away from the wavy wall. Matsubara et al. [6]

showed the heat transfer enhancement in asymmetric

wavy surfaces.

On the other hand, several researchers have solved

the time-averaged Navier–Stokes equations for the tur-

bulent flow over wavy walls of large amplitude. McLean
ed.
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Nomenclature

a wall wave amplitude

bij anisotropy tensor, uiuj=2k � dij=3
Cf skin friction coefficient, 2swall=qU 2

b

Cp pressure coefficient, 2Pwall=qU 2
b

Cl, Ce1, Ce2 model constants

DH hydraulic diameter, 2H
fl, f2, fk model functions

H channel height

kf thermal conductivity

Nu Nusselt number, Nu ¼ hDH=kf ¼ q00wDH=
kfðHw �HbÞ

P mean pressure

Pk production of turbulent kinetic energy,

Pk ¼ �uiujoUi=oxj
Pr Prandtl number, Pr ¼ m=a
Prt turbulent Prandtl number

Pwall wall pressure

q00w wall heat flux

Reb Reynolds number, Reb ¼ UbH=m
Res Reynolds number, Res ¼ 0:5usH=m
Rt turbulent Reynolds number, Rt ¼ k2=me
Sij strain rate tensor, Sij ¼ 0:5ðUi;j þ Uj;iÞ
St Stanton number, St ¼ q00w=ðqCpUbÞ=

ðHw �HbÞ
t time

uj fluctuating velocities

uiuj Reynolds stress

us friction velocity

Ub bulk mean velocity

Uj mean velocities

Wij vorticity tensor, Wij ¼ 0:5ðUi;j � Uj;iÞ

Greek symbols

at thermal eddy diffusivity

bi coefficients of nonlinear stress–strain rela-

tion

ci coefficients of nonlinear heat flux model

k wavelength

m kinematic molecular viscosity

mt eddy viscosity

q density

swall wall shear stress

h fluctuating temperature

hs friction temperature, hs ¼ q00w=ðqCpusÞ
H mean temperature

Hþ nondimensional mean temperature, Hþ ¼
ðHw �HÞ=hs

Hb bulk mean temperature

Hw wall temperature
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[7] obtained the distribution of wall pressure and shear

stress using an algebraic eddy viscosity model. For

small-amplitude wavy wall, their predictions agree well

with the experimental data. For larger-amplitude wavy

wall, appearance of reverse flow region is predicted in

the wave trough region. In a two-dimensional wavy

channel, Patel et al. [8] explored steady flows with the

standard k–e model employing one-equation near-wall

treatment. They described the effects of alternating

pressure gradients induced by the periodic change of

surface curvatures. The results were judged to capture

the overall features including the breakdown of the

logarithmic law of the wall in separated flow region.

However, as they pointed out, it is needed to develop

a more accurate turbulence model.

To analyze the accompanying heat transfer, com-

prehensive knowledge of flow structure is indispensable.

Furthermore, to predict the heat transfer in a wavy

channel accurately, reliable flow computations should be

preceded. The direct numerical simulation seems to be

promising for resolving turbulent motions in detail.

However, it requires big computer resources and large

CPU time. On the other hand, numerical solutions based

on the turbulence model are cost effective in practical

applications. Recently, Park et al. [9] developed a non-
linear stress–strain relationship and an explicit algebraic

heat flux model (EAHM) on the basis of the linear

k–e–fl model of Park and Sung [10]. The nonlinear

formulation was derived from the Cayley–Hamilton

theorem [11] in a homogeneous flow. The coefficients of

various nonlinear terms were determined from Sch-

warz’s inequality and realizability constraints. To re-

solve the near-wall anisotropy, the nonlinear terms were

modified by introducing additional coefficients of the

strain variables. Their nonlinear model was successfully

validated by predicting several turbulent flows, e.g.

channel flows, flows around a backward-facing step and

impinging jet. Therefore, it is expected that the afore-

stated features of wavy channel flow can well be pre-

dicted by employing this model.

In the preliminary stage of the present study, how-

ever, the nonlinear k–e–fl model of Park et al. [9] was

found to work better for predicting turbulent flows and

heat transfer in a wavy channel if it is slightly modified.

Emphasis is placed in the modification on the strain

damping function (fl2) and the wall corrections of the

nonlinear terms. The model validation is therefore per-

formed again by comparing the calculated turbulence

quantities with the corresponding DNS data [12] for a

fully developed flat plate channel flow. Also, for a wavy
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channel flow, the model validation is made by compar-

ing the present results with the DNS data of Maaß and

Schumann [4] (obtained from ERCOFTAC database,

http://ercoftac.mech.surrey.ac.uk). Turbulent flow in a

channel having the undulated wall shows different

behavior depending on the Reynolds number (Reb) and
wave amplitude (a). When sinusoidal undulation is ap-

plied to the wall with heat transfer, a kind of dissimi-

larity may exist between the momentum and heat

transport. Therefore, several cases of different wave

amplitude for wall undulation are studied at the Rey-

nolds number Reb ¼ 6760 and the wavelength k ¼ H .
2. Turbulence models

2.1. Flow field equations

For an incompressible turbulent flow, the governing

equations can be written in Cartesian tensor notation as

oUi

oxi
¼ 0; ð1Þ

oUi

ot
þ Uj

oUi

oxj
¼ � 1

q
oP
oxi

þ o

oxj
m
oUi

oxj

�
� uiuj

�
þ F1d1i: ð2Þ

For a fully developed channel flow, the flow is driven by

the forcing term F1 (mean pressure gradient). There are

two methods of providing the forcing term: one is fixing

the mean pressure gradient in time or in the iteration,

and the other is fixing the mass flow rate in time. In

order to investigate the undulation effects, it is desirable

to keep the Reynolds number based on the bulk mean

velocity constant. Therefore, the latter case is adopted in

the present study. The mean pressure gradient is ob-

tained at each time step by integrating the Navier–

Stokes equation in the streamwise direction [13].

2.2. Turbulence equations

The starting point of the present study is the nonlinear

k–e–fl model of Park et al. [9]. The basic formulation is

briefly summarized below. Further details regarding the

formulation can be found in Park et al. [9]. The Reynolds

stress can be expressed in a conventional form as

�uiuj linear ¼ mt
oUi

oxj

�
þ oUj

oxi

�
� 2

3
kdij; ð3Þ

�uiuj ¼ �uiuj linear � kb2 S�
ikS

�
kj

�
� 1

3
S�2dij

�

� kb3ðW �
ik S

�
kj � S�

ikW
�
kjÞ � kb4ðS�

ilS
�
lmW

�
mj

� W �
il S

�
lmS

�
mjÞ � kb5 W �

il W
�
lmS

�
mj

�
þ S�

ilW
�
lmW

�
mj

þ 0:5S�
ijW

�2 � 2

3
IIISdij

�
; ð4Þ
mt ¼ Clfl
k2

e
; ð5Þ

where b2 ¼ ~b2 þ ~b2;wallCw, b3 ¼ ~b3 þ ~b3;wallCw, b4 ¼ ~b4,

b5 ¼ ~b5, IIIS ¼ S�
lmW

�
mnW

�
nl, S

�
ij ¼ Sijk=e, W �

ij ¼ Wijk=e, S� ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2S�

ijS
�
ij

p
and W � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W �

ij W
�
ij

p
. In the above, bi represents

the strain dependent coefficients and the model constant

is set as Cw ¼ 1 for i ¼ j and Cw ¼ 0 for i 6¼ j.
The variations of the eddy viscosity are allowed by

decomposing fl into two parts, i.e., fl ¼ fl1fl2, where
fl1 signifies the effect of wall-proximity in the near-wall

region while fl2 represents the strain effects [14].

fl1 ¼ ð1þ fDR
�3=4
t Þf 2

w; ð6Þ

o2fw
oxjoxj

¼ R3=2
t

A2L2
ðfw � 1Þ; ð7Þ

fl2 ¼
15

3

1þ g
g2 þ Clg3 þ As

; ð8Þ

g ¼
C0

3
þ ðP1 þ

ffiffiffiffiffi
P2

p
Þ1=3 þ signðP1 �

ffiffiffiffiffi
P2

p
ÞjP1 �

ffiffiffiffiffi
P2

p
j1=3; P2 P 0;

C0

3
þ 2ðP 2

1 � P2Þ1=6 cos 1
3
arccos P1ffiffiffiffiffiffiffiffiffi

P2
1
�P2

p
� �� �

; P2 < 0:

8<
:

ð9Þ
Here, the fD function is defined as fD ¼ 10 exp½�ðRt=
120Þ2� and L is a turbulence length scale L2 ¼ k3=e2 þ
702

ffiffiffiffiffiffiffiffiffi
m3=e

p
[15]. The model constants are set as Cl ¼ 0:09

and A ¼ 8:4. P1 and P2 are defined as

P1 ¼ C0

C2
0

27

�
� ðAs þ a1g2Þ

6
þ 1

2

�
;

P2 ¼ P 2
1 � C2

0

9

�
� ðAs þ a1g2Þ

3

�
; ð10Þ

where As ¼ a23n
2 � a22g

2=3, a1 ¼ �0:48 and C0 ¼ 2:5. In
order to consider the wall-proximity effect in the vicinity

of the wall, the mean strain rates are modified as

g ¼ fwS� and n ¼ fwW �.

The turbulent kinetic energy equation and its dissi-

pation rate equation are

ok
ot

þ Uj
ok
oxj

¼ o

oxj
m

��
þ mt
rk

�
ok
oxj

�
þ Pk � e; ð11Þ

oe
ot

þ Uj
oe
oxj

¼ o

oxj
m

��
þ mt
re

�
oe
oxj

�
þ C�

e1Pk
�

� Ce2f2e
�
=T

þ Ce3ð1� fwÞmmt
o2Ui

oxjoxk

� �2

; ð12Þ

where the model constants are set as rk ¼ 1:1, re ¼ 1:3,
Ce2 ¼ 1:9 and Ce3 ¼ 0:8, respectively. The model func-

tion f2 is expressed as f2 ¼ 1� ð2=9Þ expð�0:33R1=2
t Þ,

which describes the effect of decaying turbulence [16].

http://ercoftac.mech.surrey.ac.uk
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The turbulent timescale is defined as T ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=eÞ2 þ 36ðm=eÞ

q
[15]. The strain effect is incorporated

in C�
e1 which has the form C�

e1 ¼ 1:42þ Cl=ð1þ 5fl2g2Þ.
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Fig. 1. Predictions of b11, b22 and b33 by turbulence models.
2.3. Modification of model coefficients

As seen in Eq. (4), uiuj of Park et al. [9] has the

limitation that the wall corrections are restricted to the

normal Reynolds stresses. In the present study, this

imperfection is removed by giving modification to bi in a

way similar to the study of Park et al. [9]. Also, the

strain damping function fl2 is readjusted because fl2 is

connected to b1 as fl2 ¼ �b1=Cl. In the previous deri-

vation without wall corrections, the model coefficients

were set as b2 ¼ 2a2b1, b3 ¼ �a3b1, b4 ¼ �6a2a3 and

b5 ¼ 2a23b1, respectively.

In the near-wall region, the shear flow is nearly

parallel except around a separation or stagnation point.

In this situation, the near-wall behavior of the normal

Reynolds stress is controlled by b2 and b3 [9]. Therefore,

the special treatment is needed for b2 and b3. The strain

dependent coefficients are now modeled as

b2 ¼ 4a2Clfl2f 2
w=gþ b2;wall; b3 ¼ 2a3Clfl2f 2

w=gþ b3;wall;

b4 ¼�6a2a3Clfl2f 2
w=g

2; b5 ¼ 2a23Clfl2f 2
w=g

2;

ð13Þ

where b2;wall ¼ ð1� fwÞ2:0=Sw, b3;wall ¼ ð1� fwÞð1:5=Sw �
2a3Clfl2f 2

w=gÞ and fl2 ¼ 5:41g=ðg2 þ AsÞ. Here, g is a

solution of Eq. (9) and the fw function is used as a blend of

the near-wall corrections with the outer-region anisotro-

pies. The fl2 function has been tuned in the preliminary

calculations for a wavy channel and backward-facing step.

The model constants a2 and a3 are rearranged from the

evaluation of Gatski and Speziale [17], i.e., a2 ¼ �0:375
and a3 ¼ �0:8. To correct the wall behaviors (yþ 6 100),

the modified strain variable Sw is introduced. In the

vicinity of the wall, Sw has to maintain the relation

Sw � OðS�2Þ. This is because the limiting values of b11 and
b22 have a non-zero value [12]. Based on the above

behavior, Sw is modeled as Sw ¼ ð1þ ½MAXðS�;W �Þ�2Þ=
ð1þ fwÞ.

In the present study, the model performance is ex-

plored by comparing the predicted results with those by

the standard k–e model and the linear k–e–fl model. The

model functions and model constants are summarized

as follows.

For standard k–e:

Cl ¼ 0:09; C�
e1 ¼ 1:44; Ce2 ¼ 1:92; Ce3 ¼ 0:0;

rk ¼ 1:0;

re ¼ 1:3; fl ¼ 1; f2 ¼ 1; T ¼ k=e:

ð14Þ
For linear k–e–fl:

Cl ¼ 0:09; C�
e1 ¼ 1:42þ Cl=ð1þ 5fl2g2Þ;

Ce2 ¼ 1:9; Ce3 ¼ 0:8;

rk ¼ 1:1; re ¼ 1:3; fl ¼ fl1fl2;

fl1 ¼ ð1þ fDR
�3=4
t Þf 2

w; fl2 ¼ 5:41g=ðg2 þ AsÞ;

f2 ¼ 1� ð2=9Þ expð�0:33R1=2
t Þ; T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=eÞ2 þ 36ðm=eÞ

q
:

ð15Þ

The stress–strain relationship of the above two models is

obtained from uiuj linear. On the other hand, nonlinear

k–e–fl model has the nonlinear stress–strain relation

which is expressed by the cubic relations in mean

velocity gradients (see Eq. (4)). The coefficients of vari-

ous nonlinear terms are determined from Eq. (13).

2.4. Model validation

It is essential to check the reliability of the present

modification. Toward this end, the present model has

been tested in a homogeneous shear flow and a fully

developed flow between two flat plates. For a simple

shear flow (W � ¼ S� and fw ¼ 1), the present modifica-

tion is validated by showing the anisotropy prediction.

The model of Craft et al. [18] is also tested for com-

parison. As shown in Fig. 1, the calculated normal stress

anisotropies are in good agreement with the experi-

mental [19] and DNS data [20]. The model of Craft et al.

[18] shows an increasing behavior in highly strained re-

gions (S� P 30). This is attributed to the fact that the

quadratic terms of their nonlinear model increase with

an increase of
ffiffiffiffiffi
S�

p
. However, the present model satisfies

the realizability limitation well. The profiles of the cal-

culated time mean velocity and turbulent kinetic energy

obtained for the flat plate channel flow are illustrated in

Fig. 2 together with the DNS data [12]. Although the

calculated kinetic energy is slightly overpredicted in the

case of Res ¼ 180, the present results show good agree-

ment with the DNS data. The near-wall behaviors of
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Fig. 2. Comparison of the predicted Uþ and kþ with DNS: o, DNS [12]; ––, nonlinear k–e–fl. (a) Res ¼ 180 and (b) Res ¼ 395.
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Reynolds stresses are presented in Fig. 3. The near-wall

anisotropy in the region of yþ 6 100 is well captured

with the present model and as is demonstrated in the

figure the computed anisotropy is strongly affected by

the two constants b2;wall and b3;wall.
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3. Thermal field equation

In calculating turbulent heat transfer, the explicit

algebraic heat flux model of Park et al. [9] is adopted.

The governing equation of mean temperature is ex-

pressed as

oH
ot

þ Uj
oH
oxj

¼ o

oxj

m
Pr

oH
oxj

�
� huj

�
: ð16Þ
The Prandtl number is set as Pr ¼ 0:7. The heat flux

�huj is determined by

hui ¼ �at
2

3
dij

�
þ 2fwbij

�
H;j � aik Sh

km

�
þ W h

km

�
H;m

� 2aikðSh
klS

h
lm þ W h

klW
h
lm þ Sh

klW
h
lm þ W h

klS
h
lmÞH;m;

ð17Þ

where aik ¼ atc2ðuiuk=kÞ, Sh
ij ¼ CT 2Sijðk=eÞ and W h

ij ¼
CT3Wijðk=eÞ. In the above equation, c2 prevents

an excessive increase of the strain dependent terms.

The c2 function is defined by c2 ¼ fwð2þ g�t Þ=½2þ n2s þ
g�t ð1þ g�t Þ�, where g�t ¼ n2t � g2t , ns ¼ MAXðn2t ; g2t Þ,
gt ¼

ffiffiffiffiffiffiffiffiffiffi
Sh
ijS

h
ij

q
and nt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
W h

ij W
h
ij

q
. The model constants are

set as CT 2 ¼ 0:2 and CT3 ¼ 0:12.

The thermal diffusivity is expressed as at ¼ Ckfkmt.
The coefficient Ck is a function of Rt and Pr [21]. The



2408 T.S. Park et al. / International Journal of Heat and Mass Transfer 47 (2004) 2403–2415
near-wall effect of at is incorporated in the fk function.

The coefficient Ck and the fk function are modeled as

fk ¼ ½1� expð�8fwÞ�3; ð18Þ

Ck ¼
2

3
1

�
þ 12:5

R0:5
t

�2

1

�
þ 130

RtPr

��0:25

: ð19Þ
0.4

92X82
122X102
152X102

Reb=6760

a/ =0.05λ
4. Numerical procedure

A fractional-step method is used to solve the gov-

erning equations. The spatial discretization is performed

with the fourth-order compact scheme [22] for the con-

vective term in Eq. (2) and the HLPA scheme [23] for

the convective term in k-, e- and H-equation. The vis-

cous term and the other terms are evaluated by the

fourth-order central-differencing. A non-staggered grid

arrangement is adopted. So, the momentum interpola-

tion technique is employed to avoid the pressure–

velocity decoupling. The time integration is based on a

hybrid scheme using the third-order Runge–Kutta

method for the explicitly treated terms and the Crank–

Nicolson method for the implicitly treated terms. The

implicit terms in each equation are the diffusion terms

without cross derivatives. The explicit terms are the

diffusion terms with cross derivatives and the source

terms. Details regarding this hybrid scheme can be

found in You et al. [13]. Convergence of Poisson equa-

tion for pressure is accelerated with a multigrid method

[24]. The computation was judged to have converged

when the normalized sum of absolute residual sources

over all the computational nodes has come down to a

value less than 10�4.

Fig. 4 shows the computational domain for a wavy

wall channel. The streamwise and vertical coordinates

are denoted by x and y. Periodic boundary conditions

are applied at upstream and downstream ends of the

computational domain. In the y direction, the lower wall
has the undulation of sinusoidal shape of the amplitude

a and its mean position is located at y ¼ 0. The upper

flat wall is located at y ¼ H . The location of the wavy

wall, yw, is given by yw ¼ a cosð2px=kÞ. The wall boun-

dary conditions employed are: U ¼ V ¼ k ¼ fw ¼ 0,
x /λ

H

a

=λ

y

L =3λ

flow

C

H

Θ

Θ

Fig. 4. Computational domain of flow over a wavy wall.
ew ¼ 2mk=n2first, and oP=on ¼ 0, where nfirst is the wall-

normal distance between the wall surface and the first

grid point, and n implies the normal direction against

the wall surface. The flat wall is maintained at a constant

temperature HC while the wavy wall is heated at another

constant temperature HH . The maximum value of

nþ � usn=m at the first grid point is nþmax ¼ 0:5.
5. Results and discussion

Turbulent flow past a wavy wall channel can be

categorized into several regimes depending on the Rey-

nolds number and wall wave amplitude. It is expected

that a linear response is observed for the case of small

amplitude and at low Reynolds numbers. As both in-

crease, a nonlinear response is observed and a separated

flow appears. The boundaries between these regimes are

still obscure. Therefore, it is desirable to analyze the

response of flow characteristics to the wall wave ampli-

tudes. The wall wave amplitude is varied in the

range 06 a=k6 0:15. The Reynolds number is fixed at

Reb ¼ 6760 for all wave amplitudes, corresponding to

the value adopted in the DNS of Maaß and Schumann

[4]. The grid dependency was checked by carrying out

the computation for the four cases: 92· 82, 122· 102,
152 · 102 and 152· 122. In all the cases, the value of

Courant–Friedrichs–Lewy number was kept smaller

than unity. Flow Reynolds number is Reb ¼ 6760 as

described above and wall undulation amplitude is

a=k ¼ 0:05 where a is the undulation amplitude and k
the wavelength. As shown in Fig. 5, the result with a

122 · 102 mesh was found to be satisfactory.

Now the applicability of the presently modified

nonlinear k–e–fl model is further discussed by compar-

ing the present results with those obtained with the

standard k–e model, the linear k–e–fl model and the low

Reynolds number k–e model by Abe et al. [25] (hereafter

called AKN model), which is popularly included in the
x/λ
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Fig. 5. Grid convergence test.
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test of turbulence models. Fig. 6 shows the streamwise

distribution of the wall friction coefficient Cf along the

undulant wall. The value of Cf reflects the alternating

appearance of the favorable and adverse pressure gra-

dient or the appearance of flow separation and reat-

tachment in the case of a deep undulation. As can be

seen in the figure, the standard k–e model cannot predict

the appearance of flow separation which should actually

appear at this wall wave amplitude. This indicates that

the wall function treatment does no longer work in this

case. In addition, the standard k–e model responds only

obtusely to the flow acceleration resulting in a lower

peak of Cf . On the other hand, the appearance of flow

separation can be predicted with the nonlinear k–e–fl
model. The linear k–e–fl model also works quite well in

this sense. AKN model gives reasonable results in a

point that the obtained value of Cf becomes negative in

the trough of the wall undulation. However, it is not

very good in another sense. Its distribution profile does

not have such two local minima as the results of DNS

have. So, the present nonlinear k–e–fl model works

slightly better in this point.

The separation (xs) and reattachment (xr) points are
predicted as xs ¼ 0:135k and xr ¼ 0:61k for linear k–e–fl
model. Here, xs and xr are defined as locations where

wall shear stress vanishes. Comparing with the predic-

tion of linear k–e–fl model, the nonlinear model predi-

cts a short recirculation zone, i.e., xs ¼ 0:14k and
Table 1

Comparison of xs and xr (Reb ¼ 6760, k ¼ H and a ¼ 0:05H )

Case Separation (xs) Reattachment (xr)

Hudson 0.22k 0.58k
Maaß and Schumann 0.15k 0.59k
Cherukat et al. 0.14k 0.59k
AKN 0.14k 0.56k
Linear k–e–fl 0.135k 0.61k
Nonlinear k–e–fl 0.140k 0.57k
xr ¼ 0:57k. Table 1 tabulates the presently calculated

positions of the flow separation and flow reattachment

points together with the DNS data reported by Maaß

and Schumann [4] and Cherukat et al. [5] and the

experimental data by Hudson [2]. The present results

agree well with the DNS data.

The results obtained with the three models are now

discussed in terms of the time mean velocity components

and turbulence quantities. Fig. 7 shows the transverse

distributions of the streamwise and transverse compo-

nents of time mean velocity U=Ub and V =Ub at four

different streamwise locations. The predicted results with

the three turbulence models are compared with the DNS

data of Maaß and Schumann [4]. The U=Ub profile

shows the asymmetry caused by the difference of the

surface drag between the two wall boundaries. The lin-

ear k–e–fl model and the present nonlinear k–e–fl model

give almost the same results for the U=Ub profile.

However, they work differently in the prediction of

V =Ub profile and the nonlinear k–e–fl model works

slightly better near the wall. This implies that the non-

linear stress–strain relation has a significant effect in the

wavy side near-wall region, where the strain and rota-

tion rates are very strong. These effects are appropriately

included in the nonlinear stress–strain relation in con-

junction with the elliptic fw equation. On the contrary,

all the predictions with the three models show a good

agreement near the wave crest (x=k ¼ 0:992). Fig. 8

shows the distributions of Reynolds stresses together

with the counterparts of DNS. The normal stresses of

the standard k–e model and the linear k–e–fl model are

obtained by making use of the relationship uiuj ¼
2kdij=3� 2mtSij. As can be seen in Fig. 8, the predicted

results of u2=U 2
b and v2=U 2

b are underpredicted with any

of the models if compared with the DNS data. However,

the nonlinear k–e–fl model is found to give better results

for the turbulence quantities among them. The present

results of the Reynolds normal stress u2=U 2
b and the

Reynolds shear stress �uv=U 2
b obtained with the
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nonlinear k–e–fl model agree quite well with the DNS

data, while the value of v2=U 2
b is a little overpredicted at

the wavy wall side. All these points indicate that the

nonlinear stress–strain relationship introduced in the

nonlinear k–e–fl model is effective to simulate the non-

linear flow behavior near the wavy wall of the channel.

The effects of wall undulation on the flow and heat

transfer are now addressed in a little more detail based

on the results obtained with the nonlinear k–e–fl model.

The comprehensive examination of wall friction is pre-

requisite because the convective heat transfer is closely

linked to the flow structure in the near-wall region. The

evolution of the local skin friction coefficient (Cf ) and

streamlines computed by the nonlinear k–e–fl model at

various wave amplitudes (a=k) are plotted in Fig. 9. All

of the Cf profiles have similar general features; i.e., the

peaks of skin friction occur near the wavy crest and

there is a minimum friction in the wavy trough. For

a=k ¼ 0:01, the flow boundary layer still exists on the

wavy wall and produces the sinusoidal change of Cf . To

make this clearer, the predicted streamlines are com-
pared in the figure. For a=k ¼ 0:03, a small separation

zone is detected in the trough of the wavy wall. As a=k
further increases, the flow separation and reattachment

become more noticeable. This recirculating flow causes

the deviation from the sinusoidal variation of the local

Cf . However, its periodic spatial distribution in the

trough region is not seriously changed by the variation

of the wall wave amplitude. To make the effects of the

wall undulation clearer, attention is now turned to the

spatial mean quantities. The predicted total CD, flow

separation point xs and flow reattachment point xr at

various wall wave amplitudes are plotted in Fig. 10. The

total mean drag coefficient is calculated integrating the

forces acting on the wall surface: CD ¼ CDs þ CDp ¼
ð1=AÞ

R
swallSy dAþ ð1=AÞ

R
PwallSx dA, where A is the area

of wall surface, Sx and Sy are x- and y-components of

unit normal vector against the wall surface. CDs and CDp

are the friction drag and the form drag normalized by

qU 2
b=2. As seen in the distributions of xs and xr, it is

interesting to find that the growth of separation zone is

initiated at a=k � 0:02. For a=kP 0:02, the mean drag



0 0.05

0

0.5

1

x/ =0.101λ

y/
H

y/
H

y/
H

u2/U2
b

0 0.03
0

0.5

1

x/ =0.101λ

v2/U2
b

0 0.015
0

0.5

1

x/ =0.101λ

-uv/U2
b

0 0.015

x/ =0.304λ

0 0.015

x/ =0.601λ

0 0.015

x/ =0.992λ

0 0.03

x/ =0.992λ

0 0.03

x/ =0.601λ

0 0.03

x/ =0.304λ

0 0.05

x/ =0.304λ

0 0.05

x/ =0.601λ

0 0.05

x/ =0.992λ

Fig. 8. Comparison of u2=U 2
b , v2=U

2
b and �uv=U 2

b with DNS: symbol and line patterns as in Fig. 7.

a/ =0.01λ

C
f

0                                          1                                          2                                          3

0

0.01

0.02

0.03

0.04

0.05
a/ =0
a/ =0.01
a/ =0.03
a/ =0.05
a/ =0.07

x/λ

λ

λ
λ
λ
λ

a/ =0.03λ

a/ =0.05λ a/ =0.07λ

Fig. 9. Comparison of the predicted Cf and streamlines.

T.S. Park et al. / International Journal of Heat and Mass Transfer 47 (2004) 2403–2415 2411



X
s,

X
r

0 0.03 0.06 0.09 0.12 0.15
0

0.3

0.6

0.9

Xs
Xr

a/λ

C
D

0

0.03

0.06

0.09

wavy wall
flat wall

C
D

0 0.03 0.06 0.09 0.12 0.15
0

0.01

0.02

wavy wall
flat wall

τ

a/λ

C
D

p

0

0.03

0.06

0.09

wavy wall

(a)

(b)

Fig. 10. Comparison of the predicted CD, xs and xr: (a) total
drag and separation/reattachment point and (b) form drag and

friction drag.

y+

Θ
+

100 101 102
0

5

10

15

20

DNS
Present
Prt=0.9
Prt=1.0

Re =150τ

Fig. 11. Comparison of the predicted Hþ with DNS [27].

2412 T.S. Park et al. / International Journal of Heat and Mass Transfer 47 (2004) 2403–2415
CD is significantly increased in the wavy wall because of

the increase of the blockage effect. Undulation of one

wall exerts a non-negligible effect on the friction drag on

the another wall. To separate the contributions of wall

friction and wall pressure in the mean drag, CD is

decomposed into the form drag and friction drag. As

a=k increases, the form drag shows a monotonic increase

and the friction drag becomes to be overwhelmed by the

form drag. For example, at a=k ¼ 0:15 the form drag is

15.5 times larger than the friction drag. This increasing

trend of form drag with an increase of the wall wave

amplitude can also be seen in Henn’s work [26]. On the

other hand, the friction drag CDs takes maximum value

at a=k � 0:06. This is important since it is closely related

to the development of the recirculating flow region in the

wavy wall trough. A closer inspection of xs and xr
indicates that as the wave wall amplitude is further in-
creased in the range a=kP 0:06, the separated flow re-

gion is enlarged with an increase of a=k. The friction

drag then decreases gradually and at a=k ¼ 0:15, it is

reduced to 58.8% of that of the flat channel.

In order to investigate the undulation effects for heat

transfer, several simulations are performed at various

magnitudes of wall wave amplitude. Discussion will be

given firstly to the test of the present heat flux model

because the coefficients of nonlinear stress–strain rela-

tion in the nonlinear k–e–fl model have slightly been

changed. Fig. 11 shows the predicted mean temperature

profile for a fully developed turbulent flow in a flat plate

channel by using Eq. (17). A good agreement with the

DNS data [27] is found for the mean temperature. In

contrast to this, the results obtained with constant Prt
assumptions (hui ¼ �ðmt=PrtÞoH=oxi) slightly underpre-

dict the mean temperature. The effect of the wall wave

amplitudes on Nu is examined in Fig. 12. As shown in

Fig. 12(a)–(b), nine cases are selected to demonstrate the

effect of wall undulation on the wall heat transfer. As

a=k increases, the deviation from the sinusoidal varia-

tion is magnified in the spatial distribution of Nu. For
large-amplitude wall waves, the local variation of Nu is

affected by the appearance of flow separation. However,

the peaks of the local Nu occur near the wavy crest,

where the inviscid free-stream velocity is maximum. To

see the overall influence of wall wave amplitude on the

wall heat transfer, the mean Nusselt number is displayed

in Fig. 12(c). The mean Nu is calculated by Nuavg ¼R
NudA=A. The present heat flux model is compared

with the results obtained employing the constant Prt
assumption (Prt ¼ 0:9). Even though the predicted val-

ues are very different, two predictions show a common

behavior of wall heat transfer. As the wall wave ampli-

tude increases from a=k ¼ 0 to a=k ¼ 0:15, the maxi-

mum heat transfer rate is obtained at a=kP 0:11. This is
somehow similar to a feature that CDs takes maximum

value at a=k � 0:06. As can be seen in Fig. 12(a)–(b), the

lowest Nu for a=kP 0:06 is larger than that of the flat

case (a=k ¼ 0) and the Nu distribution gradually loses
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sinusoidal feature as a=k increases. Moreover, the lower-

valued region of Nu, the region where the local Nu is

less than Nuavg, is enlarged. This trend reflects the spe-

cial interrelation between the decrease of Nu in the re-

circulating flow region and the increase of Nu near

the wavy crest. Therefore, a closer inspection of Figs. 10

and 12 indicates that the variation of the mean Nu is

characterized by the change of the size of recirculating

flow region. The maximum heat transfer rate is closely

related to the strength of the reversal flow in the wavy

trough.

To scrutinize the turbulence structure in wavy wall

channel, the distributions of production of turbulent

kinetic energy (hereafter abbreviated as turbulent pro-

duction, Pk), production rate of temperature fluctuation

intensity (hereafter abbreviated as turbulent thermal

production, Ph ¼ �ujhoH=oxj) and turbulent heat flux

(vh) are displayed in Fig. 13. Each variable is normalized
by the friction velocity us and the friction temperature hs
which are both averaged on wall surfaces. The repre-

sentative two cases are selected; the non-separated

regime of a=k ¼ 0:01 and the separated regime of

a=k ¼ 0:07. us and hs are predicted as: us ¼ 212:9m and

hs ¼ 0:0251 for a=k ¼ 0:01; us ¼ 239:8m and hs ¼ 0:0379
for a=k ¼ 0:07. As seen in Fig. 13, the turbulent thermal

production is closely correlated to the changes of vh and

Pk . For a=k ¼ 0:01, the variations of Pk and Ph are re-

stricted to the region near the wall. The effect induced by

the wavy wall is confined near the wavy crest. For this

wall wave amplitude, variation of the flow and heat

transfer with wall undulation is linear, because the dis-

turbance by the wall undulation is not large. Variations

of the flow and heat transfer characteristics are more

pronounced for a=k ¼ 0:07. In the recirculation region,

the turbulent production and turbulent thermal pro-

duction are increased because of the nonlinear strains



Fig. 13. Variation of Pk , Ph and vh with the change in the amplitude of the wall waviness.
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produced in the separated shear layer. However, the

turbulent thermal production is reduced in the wavy

trough. This may be caused by the fact that temperature

gradient is reduced as a result of the intensified mixing of

the fluid in the recirculating flow region. Downstream

the reattachment point, the heated flow is convected

to the wavy crest under the favorable pressure gradient.

This flow acceleration gives rise to the enhancement of

the turbulent production and turbulent thermal pro-

duction near the wavy crest.
6. Conclusions

The nonlinear k–e–fl model of Park et al. [9] has been

modified and applied for the prediction of turbulent

flows and heat transfer in a wavy wall channel. The wall

corrections of the nonlinear terms were made through

the model coefficients related to the modified strain

variable (Sw). For a fully developed flat plate channel

flow, the present modification was validated by com-

paring the calculated turbulence quantities with the

DNS data [12,27]. For the wavy channel (a ¼ 0:05H ),

the model validation was made by comparing with the

DNS data of Maaß and Schumann [4]. The predicted

results were in generally good agreement with the DNS

data. In order to analyze the effect of surface undulation,

several wall wave amplitudes in the range 06 a=k6 0:15
were selected for Reb ¼ 6760 and k ¼ H . The results

showed that the local variations of the wall friction and

the heat transfer rate were altered by the degree of
surface undulation. It was found that the separated flow

is initiated almost at a=k ¼ 0:02. As a=k is increased, the

size of the flow recirculation zone was slightly enlarged.

Although the distributions of Cf and Nu were affected by

the appearance of the flow recirculation zone, their

patterns are similar with the shape of wavy wall surface.

For the wavy wall surface, the drag coefficient and the

heat transfer rate were higher than that of the flat wall

related to the appearance of the flow recirculation zone.

As the wave amplitude was increased from a=k ¼ 0 to

a=k ¼ 0:15, the overall CD showed a unilateral increment

because of the increased form drag. However, the fric-

tion drag was significantly reduced and the highest heat

transfer rate is observed at a=kP 0:11. The effects of the
wall wave amplitude on the flow and heat transfer

characteristics were well captured by combining the

modified nonlinear k–e–fl model with the explicit alge-

braic heat flux model of Park et al. [9].
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